Exercise 322

Solve the following trigonometric equations on the interval $\theta=[-2 \pi, 2 \pi]$ exactly.

$$
6 \cos ^{2} x-3=0
$$

Solution

Isolate the term with x.

$$
6 \cos ^{2} x=3
$$

Divide both sides by 6 .

$$
\cos ^{2} x=\frac{1}{2}
$$

Take the square root of both sides.

$$
\sqrt{\cos ^{2} x}=\sqrt{\frac{1}{2}}
$$

If there's an even power under an even root and the result has an odd power, it needs an absolute value sign.

$$
|\cos x|=\frac{1}{\sqrt{2}}
$$

Remove the absolute value sign by placing \pm on the right side.

$$
\cos x= \pm \frac{1}{\sqrt{2}}
$$

Cosine represents the horizontal distance on the unit circle.

The two vertical lines go through the unit circle in four locations. The value of x at the top-right location is

$$
x=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4},
$$

and the value of x at the top-left location is

$$
x=\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\frac{3 \pi}{4} .
$$

Add π to the value of x at the top-right location to get the value of x at the bottom-left location.

$$
x=\frac{\pi}{4}+\pi=\frac{5 \pi}{4}
$$

Add π to the value of x at the top-left location to get the value of x at the bottom-right location.

$$
x=\frac{3 \pi}{4}+\pi=\frac{7 \pi}{4}
$$

Subtract 2π from all these values of x to get the values between $[-2 \pi, 0]$.

$$
\begin{array}{r}
\frac{\pi}{4}-2 \pi=-\frac{7 \pi}{4} \\
\frac{3 \pi}{4}-2 \pi=-\frac{5 \pi}{4} \\
\frac{5 \pi}{4}-2 \pi=-\frac{3 \pi}{4} \\
\frac{7 \pi}{4}-2 \pi=-\frac{\pi}{4}
\end{array}
$$

Therefore,

$$
x=\left\{-\frac{7 \pi}{4},-\frac{5 \pi}{4},-\frac{3 \pi}{4},-\frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\right\} .
$$

